

Republic of the Philippines DEPARTMENT OF HEALTH METRO MANILA CENTER FOR HEALTH DEVELOPMENT

Department of Science and Technology

Laboratory for Drinking Water Analysis

22 September 2021 - 31 December 2023

CHEMISTRY LABORATORY - STANDARDS AND

Saliksik St., DOST Complex, Gen. Santos Avenue,

CERTIFICATE OF ACCREDITATION

TESTING DIVISION

Bicutan, Taguig City

13-0021-2123-LW-1

Owner Name of Facility

Type of Facility Location

Accreditation Number : Validity of Accreditation :

Service:

Physico-Chemical Analysis

Tests:

Arsenic Cadmium Flouride Lead Total Mercury Nickel Nitrate (NO₃) Nitrite (NO₂) Chloride Copper Iron Manganese Sodium Zinc Silicon Sulfate Turbidity pH Total Dissolved Solids Disinfectant Residual – Chlorine

By the Authority of the Secretary of Health:

This accreditation is renewable every three (3) years and subject to suspension or revocation if the facility is found violating AO 2020-0031 and related issuances

LORIA J. BALBOA, MD, MPH, MHA, CEO VI, CESO III

Director IV

CERTIFICATE OF ACCREDITATION

The Philippine Accreditation Bureau, Department of Trade and Industry, grants accreditation to

Advanced Device and Materials Testing Laboratory (ADMATEL) Industrial Technology Development Institute

DOST Compound, Gen. Santos Avenue, Bicutan, Taguig City

having been assessed and found conforming to the requirements of **PNS ISO/IEC 17025:2017** and the PAB conditions for laboratory accreditation in the field of **Chemical Testing** as specified in the Scope of Accreditation.

Accreditation Number: Scope Reference: Accreditation Validity: Certificate Validity: Date Issued: LA-2015-271B ATEL-1-0220-271B February 08, 2025 November 11, 2021 February 11, 2020

Validity of accreditation and this certificate is effective subject to continuing conformity with the criteria and PAB conditions for accreditation.

JAMES E. EMPEÑO

Director IV Philippine Accreditation Bureau

This accreditation demonstrates technical competence for the specified scope reference and operates generally in accordance with the principles of ISO 9001 (refer to joint ISO-II AC-IAE Communiqué)

CERTIFICATE OF ACCREDITATION

The Philippine Accreditation Bureau, Department of Trade and Industry, grants accreditation to

Advanced Device and Materials Testing Laboratory (ADMATEL) Industrial Technology Development Institute

DOST Compound, Gen. Santos Avenue, Bicutan, Taguig City

having been assessed and found conforming to the requirements of **PNS ISO/IEC 17025:2017** and the PAB conditions for laboratory accreditation in the field of **Mechanical Testing** as specified in the Scope of Accreditation.

Accreditation Number: Scope Reference: Accreditation Validity: Certificate Validity: Date Issued: LA-2015-272B ATEL-1-0220-272B February 08, 2025 November 11, 2021 February 11, 2020

Validity of accreditation and this certificate is effective subject to continuing conformity with the criteria and PAB conditions for accreditation.

JAMES E. EMPEÑO

Director IV Philippine Accreditation Bureau

This accreditation demonstrates technical competence for the specified scope reference and operates generally in

ATEL-1-0220-271B

SCOPE OF ACCREDITATION

Advanced Device and Materials Testing Laboratory (ADMATEL) Industrial Technology Development Institute

Chemical Testing		
Classification of Scopes	Classification of Scopes Specific tests or Measurements	
Metals and alloys		
Metals and alloys	Elemental analysis using	In-House Method
	EDS Analysis	(AL-TP-104)
	Elemental analysis using	In-House Method
	AES Analysis	(AL-TP-205)
Miscellaneous materials and pro	oducts	
Chemical tests	Weight loss / temperature range	ASTM E1131
 Clays, ceramic and related 	by Simultaneous Thermal	
materials	Analysis (STA) Technique	
- Plastics	Glass transition, Endothermic	ASTM E1356;
- Rubber	peak temperature, Exothermic	ASTM D3418
 Paints and related surface 	peak temperature by Differential	
coatings	Scanning Calorimetry (DSC)	
- Resins	lechnique	
 Inks, dyes and pigments 	Compositional analysis,	ASTM E1131;
- Adhesive sealant	Degradation peak temperature by	ASTM D6370
	Simultaneous Thermal Analysis	
	(STA) Technique	
나는 그는 것은 말하는 것 같이 없는 것	Oxidative-Induction Time (OIT) by	ASTM D3895
	Differential Scanning	
	Calorimetry	In house Mathed hand on CTID
		In-nouse Method based on FIIR
이 이 가 물었는 수요?	Identification by Fourier Transform	Operation Manual
	Chemical Engermenting	In house Method based on CTID
	identification of Microscopic	ETIP Microspostrosconu
	contaminants by	Operation Manual
	ETIP Microscopy	Operation Manual
	FTIK-INICIOSCOPY	

ATEL-1-0220-271B

SCOPE OF ACCREDITATION

Advanced Device and Materials Testing Laboratory (ADMATEL) Industrial Technology Development Institute

DOST Compound, Gen. Santos Avenue, Bicutan, Taguig City

Classification of Scopes	Specific tests or Measurements	Standard Method / Reference Standard	
	Materials and Chemical Analysis using TOFSIMS	In-house method (AL-TP-301)	

JAMES É. EMPEÑO Director IV Philippine Accreditation Bureau

ATEL-1-0220-272B

SCOPE OF ACCREDITATION

Advanced Device and Materials Testing Laboratory (ADMATEL) Industrial Technology Development Institute

DOST Compound, Gen. Santos Avenue, Bicutan, Taguig City

Mechanical Testing		
Classification of Scopes	Specific tests or Measurements	Standard Method / Reference Standard
Non-destructive test by visual ins	spection	
Visual inspection of metals	Visual Inspection using Optical Microscopy (High Power and Low Power)	In-house method (MIL-STD-750 and MIL-STD-883)
	Dimensional Measurements	In-house method (ASTM-B487-85 and SEMI-MF728-1006)
Visual inspection of non-metals	Visual Inspection using Optical Microscopy (High Power and Low Power)	In-house method (MIL-STD-750 and MIL-STD-883)
	Dimensional Measurements	In-house method (ASTM-B487-85 and SEMI-MF728-1006)
Non-destructive tests by surface	techniques	
Other specified surface techniques	SEM Imaging	In-house method (AL-TP-103)
	Linear measurement using SEM images	In-house method (AL-TP-105)
Non-destructive test by radiogram	phy	
Radiographic examination of metals Radiographic examination of non-metals	Visual inspection using 3D CT (Computed Tomography) X-RAY (Dimensional Measurements)	In-house method (AL-TP-900 3D) Reconstruction Procedure (AL-TP-901)
Radiographic examination of components and assemblies		Image Acquisition using 3D CT X-Ray

JAMES E. EMPEÑO

Director IV Philippine Accreditation Bureau

Deutsche

Contact:

Ulrike Eichfeld

Akkreditierungsstelle GmbH (German Accreditation Body)

Office Braunschweig

Phone: +49 5315921913

ulrike.eichfeld@dakks.de

DAkkS | Deutsche Akkreditierungsstelle GmbH Bundesallee 100 | 38116 Braunschweig | Germany

National Metrology Laboratory of the Philippines Mr. Manuel M. Ruiz General Santos Avenue, Bicutan TAGUIG CITY 1631 PHILIPPINES

Re-accreditation of your calibration laboratory

Dear Mr. Ruiz,

your calibration laboratory has been granted the reaccreditation for the calibration in the fields of temperature quantities, mechanical quantities and chemical and medical quantities – as shown in the annex of accreditation certificate.

The DAkkS Accreditation Body wishes you success in your work and is looking forward to good and fruitful cooperation.

Yours sincerely

signed Ulrike Eichfeld

Ulrike Eichfeld Case manager

File number:

13.10.2020

K-15035-01

Managing Director: Dr.-Ing. Stephan Finke

Chairman of the Supervisory Board: Prof. Dr. Manfred Hennecke

.....

Registered Office: Berlin Local Court Berlin-Charlottenburg HRB 122846 B VAT-ID: DE815123526

Berliner Volksbank IBAN: DE 52 10090000 8841025009 BIC: BEVODEBBXXX

Office Berlin Spittelmarkt 10 10117 Berlin Phone: +49 30 670591-0 Fax: +49 30 670591-15

Office Braunschweig Bundesallee 100 38116 Braunschweig Phone: +49 531 592-1901 Fax: +49 531 592-1905

Office Frankfurt Europa-Allee 52 60327 Frankfurt am Main Phone: +49 69 610943-0 Fax: +49 69 610943-90

www.dakks.de

Deutsche Akkreditierungsstelle GmbH

Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition

Accreditation

The Deutsche Akkreditierungsstelle GmbH attests that the calibration laboratory

National Metrology Laboratory of the Philippines General Santos Avenue, Bicutan, 1631 Taguig City, Philippines

is competent under the terms of ISO/IEC 17025:2017 to carry out calibrations in the following fields:

Thermodynamic quantities

Temperature quantities

- Resistance thermometers
- Liquid-in-glass thermometers
- Direct reading thermometers

Mechanical quantities

- Mass standards
- Weighing instruments ^{a)}
- Pressure

Chemical and Medical Quantities

Chemical analysis, reference material

- Volume of liquids

^{a)} only on-site calibration

The accreditation certificate is valid until 12.10.2025. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 6 pages.

Registration number of the certificate: D-K-15035-01-00

Dr. Heike Mahke Head of Division

Braunschweig, 13.10.2020

See notes overleaf.

Deutsche Akkreditierungsstelle GmbH

Office Berlin Spittelmarkt 10 10117 Berlin Office Frankfurt am Main Europa-Allee 52 60327 Frankfurt am Main Office Braunschweig Bundesallee 100 38116 Braunschweig

The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAkkS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf.

No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAkkS.

The accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelleG) of 31 July 2009 (Federal Law Gazette I p. 2625) and the Regulation (EC) No 765/2008 of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Union L 218 of 9 July 2008, p. 30). DAkkS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Accreditation Forum (IAF) and International Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations.

The up-to-date state of membership can be retrieved from the following websites:

EA: www.european-accreditation.org

ILAC: www.ilac.org

IAF: www.iaf.nu

Deutsche Akkreditierungsstelle GmbH

Annex to the Accreditation Certificate D-K-15035-01-00 according to ISO/IEC 17025:2017

Period of validity: 13.10.2020 to 12.10.2025

Date of issue: 13.10.2020

Holder of certificate:

National Metrology Laboratory of the Philippines General Santos Avenue, Bicutan, 1631 Taguig City, Philippines

Calibration in the fields:

Thermodynamic quantities

- **Temperature quantities**
- Resistance thermometers
- Liquid-in-glass thermometers
- Direct reading thermometers

Mechanical quantities

- Mass standards
- Weighing instruments ^{a)}
- Pressure

Chemical and Medical Quantities

- Chemical analysis, reference material
- Volume of liquids

^{a)} only on-site calibration

The management system requirements in DIN EN ISO/IEC 17025 are written in language relevant to operations of calibration laboratories and operate generally in accordance with the principles of DIN EN ISO 9001.

The certificate together with its annex reflects the status at the time of the date of issue. The current status of the scope of accreditation can be found in the database of accredited bodies of Deutsche Akkreditierungsstelle GmbH. https://www.dakks.de/en/content/accredited-bodies-dakks

Permanent Laboratory

Calibration and Measurement Capabilities (CMC)

Measurement quantity / Calibration item	Range		!	Measurement conditions / procedure	Expanded uncertainty of measurement ¹⁾	Remarks
Temperature quantities Platinum Resistance	-30 °C	to	0 °C	Cryostatic bath DKD-R 5-1:2018	25 mK	Comparison with standard platinum
Thermometers	>0 °C	to	90 °C	Water bath DKD-R 5-1:2018	25 mK	Determination of the
	> 90 °C	to	250 °C	Oil bath DKD-R 5-1:2018	30 mK	according to IEC 60751
	0 °C	(Ice Pc	oint)	Ice bath DKD-R 5-1:2018	10 mK	
Liquid-in-Glass Thermometers	-30 °C	to	0 °C	Cryostatic bath PTB-Prüfregeln, Volume 2: Liquid-in-glass Thermometers	45 mK	Comparison with standard platinum resistance thermometer
	>0 °C	to	90 °C	Water bath PTB-Prüfregeln, Volume 2: Liquid-in-glass Thermometers	45 mK	
	> 90 °C	to	250 °C	Oil bath PTB-Prüfregeln, Volume 2: Liquid-in-glass Thermometers	45 mK	
Digital Thermometers	-30 °C	to	0 °C	Cryostatic bath DKD-R 5-1:2018	30 mK	
	>0 °C	to	90 °C	Water bath DKD-R 5-1:2018	30 mK	
	> 90 °C	to	250 °C	Oil bath DKD-R 5-1:2018	30 mK	

¹⁾ The expanded uncertainties according to EA-4/02 M:2013 are part of CMC and are the best measurement uncertainties within accreditation. They have a coverage probability of approximately 95 % and have a coverage factor of k = 2 unless stated otherwise. Uncertainties without unit are relative uncertainties referring to the measurement value unless stated otherwise.

Permanent Laboratory

Calibration and Measurement Capabilities (CMC)

Measurement quantity / Calibration item		Range		Measurement conditions / procedure	Expanded uncertainty of measurement ¹⁾	Remarks
Mass standard	1 mg	2mg	5 mg	OIML R 111-1:2004 (E)	0.002 mg	For weight pieces
Conventional mass		10 mg		without density	0.002 mg	OIML R 111-1:2004, up
		20 mg		determination	0.003 mg	to Class E2
		50 mg			0.004 mg	
		100 mg			0.005 mg	
		200 mg			0.006 mg	
		500 mg			0.008 mg	
		1 g			0.010 mg	
		2 g			0.012 mg	
		5 g			0.016 mg	
		10 g			0.020 mg	
		20 g			0.025 mg	
		50 g			0.03 mg	
		100 g			0.05 mg	
		200 g			0.10 mg	
		500 g			0.25 mg	
		1 kg			0.50 mg	
		2 kg			1.0 mg	
		5 kg			2.5 mg	
		10 kg			5.0 mg	
		20 kg			10 mg	
		50 kg			25 mg	
		100 kg		-	160 mg	For weight pieces according to
		200 kg			300 mg	OIML R 111-1:2004, up to Class F1
		500 kg			8.0 g	For weight pieces according to OIML R 111-1:2004, up to Class M1

¹⁾ The expanded uncertainties according to EA-4/02 M:2013 are part of CMC and are the best measurement uncertainties within accreditation. They have a coverage probability of approximately 95 % and have a coverage factor of k = 2 unless stated otherwise. Uncertainties without unit are relative uncertainties referring to the measurement value unless stated otherwise.

Period of validity: 13.10.2020 to 12.10.2025 Date of issue: 13.10.2020

Permanent Laboratory

Calibration and Measurement Capabilities (CMC)

Measurement quantity / Calibration item	F	Range	5	Measurement conditions / procedure	Expanded uncertainty of measurement 1)	Remarks
Conventional mass	1 mg	to	10 mg	OIML R 111-1:2004 (E)	0.0080 mg	For free nominal
	> 10 mg	to	20 mg	without density	0.010 mg	values
	> 20 mg	to	50 mg	determination	0.012 mg	$m_{\rm c}$ = conventional mass
	> 50 mg	to	100 mg		0.016 mg	
	> 100 mg	to	200 mg		0.020 mg	
	> 200 mg	to	500 mg		0.025 mg	
	> 500 mg	to	1 g		0.030 mg	
	> 1 g	to	2 g		0.040 mg	
	> 2 g	to	5 g		0.050 mg	
	> 5 g	to	10 g		0.060 mg	
	> 10 g	to	20 g		0.080 mg	
	> 20 g	to	50 g		0.10 mg	
	> 50 g	to	100 g		0.16 mg	
	> 100 g	to	50 kg		$1.7\cdot 10^{-6}m_{ m c}$	
	> 50 kg	to	500 kg		$5\cdot 10^{-5}m_{ m c}$	
Pressure Gauge Pressure <i>p</i> _e	0.2 MPa	to	4 MPa	DKD-R-6-1: 2014	7.1 ·10 ⁻⁵ · <i>p</i> e, but not less than 25 Pa	Pressure Medium: Gas p _e : measured gauge
C III	>4 MPa	to	20 MPa	LUNAMET CG-17 VEISION 4.0	$7.1\cdot 10^{-5}\cdot p_{ m e}$	pressure in MPa
	1.25 MPa	to	6.8 MPa		$1.1\cdot 10^{-4}\cdot p_{ m e}$, but not less than 410 Pa	Pressure Medium: Liquid p _e : measured gauge
	> 6.8 MPa	to	100 MPa		$8.3 \cdot 10^{-5} \cdot p_{e}$, but not less than 630 Pa	pressure in MPa
Absolute Pressure <i>p</i> _{abs}	0.3 MPa	to	4.1 MPa	DKD-R-6-1: 2014 EURAMET cg-17 Version 4.0 Principle of measurement:	7.1 \cdot 10 ⁻⁵ \cdot p_{abs} , but not less than 25 Pa	Pressure Medium: Gas p_{abs} : measured pressure in MPa
	> 4.1 MPa	to	20.1 MPa	$p_{abs} = p_e + p_{amb}$	$7.1 \cdot 10^{-5} \cdot \rho_{abs}$	atmospheric pressure p_{amb} (barometer) has to be added.
	1.35 MPa	to	6.9 MPa		$1.1 \cdot 10^{-4} \cdot p_{abs}$, but not less than 410 Pa	Pressure Medium: Liquid p_{abs} : measured absolute pressure in MPa
	> 6.9 MPa	to	100.1 MPa		8.3 \cdot 10 ⁻⁵ \cdot p_{abs} , but not less than 630 Pa	atmospheric pressure p_{amb} (barometer) has to be added.

¹⁾ The expanded uncertainties according to EA-4/02 M:2013 are part of CMC and are the best measurement uncertainties within accreditation. They have a coverage probability of approximately 95 % and have a coverage factor of k = 2 unless stated otherwise. Uncertainties without unit are relative uncertainties referring to the measurement value unless stated otherwise.

Period of validity: 13.10.2020 to 12.10.2025 Date of issue: 13.10.2020

Permanent Laboratory

Calibration and Measurement Capabilities (CMC)

Measurement quantity / Calibration item	Range	Measurement conditions / procedure	Expanded uncertainty of measurement ¹⁾	Remarks
Chemical analysis Volume of liquids/ Piston-operated Pipettes with Variable	1 μL to < 10 μL		a. 2.0 % b. 1.5 % c. 1.0%	Measurement uncertainties refer to nominal volumes. a) Upper nominal
volume	10 μL to < 100 μL		a. 0.45 % b. 0.34 % c. 0.23 %	$(V_T = 1, 0 \cdot V_N) \text{ for}$ devices with fixed or variable volume b) Middle nominal volume:
	100 μL to < 1200 μL	Gravimetric Method according to ISO 8655:2002 and DKD R 8-1:2011	a. 0.23 % b. 0.17 % c. 0.12 %	$(V_T = 0, 5 \cdot V_N)$ for devices with variable volume c) Lower nominal volume: $(V_T = 0, 1 \cdot V_N)$ for
	1200 μL to 10 ml		a. 0.15 % b. 0.11 % c. 0.075 %	V_{T} : Test volume V_{N} : Nominal volume
Volume of liquids/	1 μL to < 10 μL		2.0 %	
Piston-operated Pipettes with Fixed Volume	10 μL to < 100 μL		0.45 %	
	100 μL to < 1200 μl		0.23 %	
	1200 μL to 10 mL		0.15 %	
Volume of liquids/ Dispenser	1 μL to < 10 μL		a. 2.0 % b. 1.5 % c. 1.0%	Measurement uncertainties refer to nominal volumes.
	10 μL to < 100 μL	_	a. 0.45 % b. 0.34 % c. 0.23 %	d) Upper nominal volume: $(V_T = 1, 0 \cdot V_N)$ for
100 μL to < 1200 μL 1200 μL to < 10 mL	100 μL to < 1200 μL	Gravimetric Method	a. 0.23 % b. 0.17 % c. 0.12 %	devices with fixed or variable volume e) Middle nominal volume: $(V_T = 0, 5 \cdot V_N)$ for devices with
	1200 µL to < 10 mL	according to ISO 8655:2002 and DKD R 8-2:2017	a. 0.15 % b. 0.11 % c. 0.075 %	
	10 mL to 100 mL		a. 0.075 % b. 0.056 % c. 0.038 %	f) Lower nominal volume: $(V_T = 0, 1 \cdot V_N)$ for devices with variable volume V_T : Test volume V_N : Nominal volume

¹⁾ The expanded uncertainties according to EA-4/02 M:2013 are part of CMC and are the best measurement uncertainties within accreditation. They have a coverage probability of approximately 95 % and have a coverage factor of k = 2 unless stated otherwise. Uncertainties without unit are relative uncertainties referring to the measurement value unless stated otherwise.

Permanent Laboratory

Calibration and Measurement Capabilities (CMC)

Measurement quantity / Calibration item	Range	Measurement conditions / procedure	Expanded uncertainty of measurement ¹⁾	Remarks
Volume of liquids/	0.1 mL to 1 mL	Gravimetric Method	0.30 %	
Volumetric Instruments	> 1 mL to 10 mL	according to	0.085 %	
made of glass,"Ex"	> 10 mL to 100 mL	ISO 4787:2011	0.045 %	
Volumo of liquids/	1 mL to 10 mL		0.085 %	
	> 10 mL to 100 mL	Gravimetric Method	0.050 %	
volumetric instruments	> 100 mL to 1000 mL		0.045 %	
	> 1 L to 5 L	130 4787.2011	0.042 %	

On-site Calibration

Calibration and Measurement Capabilities (CMC)

Measurement quantity / Calibration item	Range	Measurement conditions / procedure	Expanded uncertainty of measurement ¹⁾	Remarks
Weighing instruments Non-automatic electronic weighing instruments	up to 2 kg		1.0· 10 ^{−6}	For weight pieces according to OIML R 111-1:2004 Class E ₂ weight pieces
	up to 60 kg	EURAMET Calibration	6.0 · 10 ⁻⁶	For weight pieces according to OIML R 111-1:2004 Class F ₁ weight pieces
	up to 200 kg	Guide No18 Version 4.0	2.0 · 10 ⁻⁵	For weight pieces according to OIML R 111-1:2004 Class F ₂ weight pieces
	up to 300 kg		6.0 · 10 ⁻⁵	For weight pieces according to OIML R 111-1:2004 Class M ₁ weight pieces

Abbreviations used:

DKD-R	Guideline of Deutscher Kalibrierdienst (DKD), published by Physikalisch-Technische Bundesanstalt
РТВ	Physikalisch-Technische Bundesanstalt
EURAMET	European Association of National Metrology Institutes
OIML	International Organization of Legal Metrology

¹⁾ The expanded uncertainties according to EA-4/02 M:2013 are part of CMC and are the best measurement uncertainties within accreditation. They have a coverage probability of approximately 95 % and have a coverage factor of k = 2 unless stated otherwise. Uncertainties without unit are relative uncertainties referring to the measurement value unless stated otherwise.

ATEL-2-0819-081D

APPROVED SIGNATORIES

Standards and Testing Division Industrial Technology Development Institute Department of Science and Technology Gen. Santos Ave., Bicutan, Taguig City

Name	Program/Class of Test Biological Testing
Marlon A. Aguinaldo Agnes P. de Asis Gemma T. Rondario Alxis John C. Movida	 1.04 Tests on cosmetics, perfumes and essential oils .01 Microbial counts .01 Aerobic plate count 1.05 Microbiological tests on foods and beverages .01 Microbial Count .01 Aerobic plate count .01 Aerobic plate count .09 Yeast and mold count .02 Indicator Microorganisms .02 Coliform count .04 <i>E. coli</i> count
	.03 Pathogens .02 S. aureus (coagulase positive) count .07 Salmonella AE. Fruits, Vegetables and Nuts and Seeds AG. Cereal and Cereal/Legume-Based Products AJ. Meat and Poultry Products AK. Fish and Shellfish Products AM. Beverages 1.09 Microbiological test on packaging materials
	1.13 Microbial test of waters, including effluents .01 Heterotrophic plate count .02 Yeast and mold count .03 E. coli count BA. Potable waters BB. Non potable water BG. Swimming and spa pools

ATEL-2-0819-081D

APPROVED SIGNATORIES

Standards and Testing Division Industrial Technology Development Institute Department of Science and Technology Gen. Santos Ave., Bicutan, Taguig City

Name	Program/Class of Test Microbiological Testing
Marlon A. Aguinaldo Gemma T. Rondario Agnes P. de Asis Alexis John C. Movida	1.18 Others Plant extracts, Non-Food / Non Pharma Products

The List of PAB Approved Signatories is valid until **23 December 2023** subject to continuing conformity with the criteria and PAB conditions for accreditation.

ÉMPEÑO JAMES Director IV Philippine Accreditation Bureau me

ATEL-2-0516-191B

APPROVED SIGNATORIES

Physical and Performance Testing Laboratory Standards and Testing Division Industrial Technology Development Institute Department of Science and Technology

DOST Compound, Gen. Santos Avenue, Bicutan, Taguig City

Name	Program/Class of Test Mechanical Testing
Adelaida G. Senica	4.08 Rubber and rubber products
Ner C. Rodriguez	.01 Tension test
Mary Ann P. Peredo	.02 Tear test
Elizabeth O. Santos	.04 Compression set tests
Imelda B. Mendoza	.05 Harness test
Paul Eric C. Maglalang	.12 Other test
Kenneth B. Tria	Abrasion
Mojahid Acmad S. Magandia	Ozone Resistance Test
Erish T. Daraciang	4.17 Plastic and plastic products
, C	.01 Tension test
	.02 Tear test
	.05 Harness test
	.09 Flow properties (Melt flow rate)
	.11 Other test
	Flexural Test
	Abrasion Test

The List of PAB Approved Signatories is valid until **03 March 2021** subject to continuing conformity with the criteria and PAB conditions for accreditation.

JAMES P **ÉMPEÑO**

Director IV Philippine Accreditation Bureau

Rev. 2

Republic of the Philippines Department of Agriculture **BUREAU OF ANIMAL INDUSTRY** Visayas Avenue, Diliman, Quezon City

CERTIFICATE

Issued to

DOST – ITDI (LABORATORY ANIMAL RESOURCE CENTER)

LAF - 0801

General Santos Avenue, Bicutan, Taguig

This facility is registered with the Bureau of Animal Industry pursuant to the provisions of the Republic Act 8485 otherwise known as Animal Welfare Act of 1998, as amended by Republic Act 10631

Animal Facility:	Date of Certification:	Valid until:	
Laboratory Animal Facility (Breeder)	23 January 2018	23 January 2021	

Approved By: **RONNIE D. DOMINGO, DVM, MSc** Officer-in-Charge, Director

By the Authority of the Director

ARLENE A ERIA V. VYTIACO Officer-in-Charge

Animal Health and Welfare Division

RF AHWD-48 Animal Facility Registration Certificate Form Rev. No. 00 October 16, 2017

Republic of the Philippines Department of Agriculture **BUREAU OF ANIMAL INDUSTRY** Visayas Avenue, Diliman, Quezon City

CERTIFICATE

Issued to

DOST – ITDI (BIOLOGICAL RESEARCH & TESTING FACILITY)

LAF - 0802 General Santos Avenue, Bicutan, Taguig

This facility is registered with the Bureau of Animal Industry pursuant to the provisions of the Republic Act 8485 otherwise known as Animal Welfare Act of 1998, as amended by Republic Act 10631

Animal Facility:	Date of Certification:	Valid until:
Laboratory Animal Facility	23 January 2018	23 January 2021

Approved By: **RONNIE D. DOMINGO, DVM, MSc** Officer-in-Charge, Director

By the Authority of the Director

ARLENE AS **RIA V. VYTIACO** Officer-in-Charge

Animal Health and Welfare Division

RF AHWD-48 Animal Facility Registration Certificate Form Rev. No. 00 October 16, 2017

Certificate of Accreditation

The Philippine Accreditation Bureau, Department of Trade and Industry, grants accreditation to

Standards and Testing Division Industrial Technology Development Institute Department of Science and Technology

Gen. Santos Ave., Bicutan, Taguig City

having been assessed and found conforming to the requirements of **PNS ISO/IEC 17025:2005** and the PAB conditions for laboratory accreditation in the field of **Biological Testing** as specified in the Scope of Accreditation.

This accreditation demonstrates technical competence for the specified scope in Appendix No. **ATEL-1-0819-081D** and the operation of a laboratory quality management system that meets the principles of ISO 9001.

This Certificate is valid until **23 December 2023** subject to continuing conformity with the criteria and PAB conditions for laboratory accreditation.

Issued this 20th day of August 2019 at Makati City, Philippines.

JAMES E EMPEÑO Director IV Philippine Accreditation Bureau

Republic of the Philippines DEPARTMENT OF HEALTH HEALTH FACILITIES AND SERVICES REGULATORY BUREAU

CERTIFICATE OF ACCREDITATION

Owner Name of Facility

Type of Facility Location

Accreditation Number Validity of Accreditation

Services Offered: Physical Analysis Department of Science and Technology
 CHEMISTRY LABORATORY-STANDARDS AND TESTING DIVISION
 Laboratory for Drinking Water Analysis
 Saliksik St., DOST Complex, Gen. Santos Avenue

Bicutan, Taguig City, Metro Manila : 13-029-1820-LW-1

: 01 October 2018 - 31 December 2020

Chemical Test for: Cadmium Flouride Lead Total Mercury Nickel Nitrate (NO₃) Nitrate (NO₂) Chloride

Copper Iron Manganese Sodium Zinc Silicon Sulfate

By Authority of the Secretary of Health:

ATTY. NICOLAS B. LUTERO III, CESO III Director IV

This accreditation is renewable every three(3) years and subject to suspension or revocation if the facility is found violating AO 2006-0024 and related issuances. Republic of the Philippines Department of Health FOOD AND DRUG ADMINISTRATION Civic Drive, Filinvest Corporate City, Alabang, Muntinlupa City, 1781 Philippines

This

Certificate of Accreditation

Laboratory Accreditation No. FDALA-2018-002

is awarded to

<u>Standards and Testing Division –</u> <u>Industrial Technology Development</u> <u>Institute, Department of Science and</u> <u>Technology</u>

Department of Science and Technology Compound, Gen. Santos Avenue, Bicutan, Taguig City

After having been assessed and found in compliance with FDA requirements and conditions for Laboratory Accreditation in accordance with the provisions of RA 9711, also known as the Food and Drug Administration Act of 2009.

SCOPE OF ACCREDITATION: CHEMICAL AND MICROBIOLOGICAL TESTING

This Certificate is valid until 17 February 2021, subject to continuing conformity with conditions and criteria for Laboratory Accreditation.

In testimony whereof, I have hereunto signed this Certificate this 06th day of December 2018.

BY AUTHORITY OF THE DIRECTOR GENERAL

JOCELYN E. BALDERRAMA, RPh, MBA Director II, Common Services Laboratory

FDA-0124503

Certificate of Accreditation

The Philippine Accreditation Bureau, Department of Trade and Industry, grants accreditation to

Inorganic Chemistry Section-Chemistry Laboratory Standard and Testing Division Industrial Technology Development Institute DOST Compound, Gen. Santos Ave., Bicutan, Taguig City

having been assessed and found conforming to the requirements of **PNS ISO/IEC 17025:2005** and the PAB conditions for laboratory accreditation in the field of **Chemical Testing** as specified in the Scope of Accreditation.

This accreditation demonstrates technical competence for the specified scope in Appendix No. **ATEL-1-1215-284A** and the operation of a laboratory quality management system that meets the principles of ISO 9001:2008.

This Certificate is valid until **22 December 2020** subject to continuing conformity with the criteria and PAB conditions for laboratory accreditation.

Issued this 23rd day of December 2015 at Makati City, Philippines.

ERNANI M. DIONISIO Director III Philippine Accreditation Bureau

Philippine Accreditation Office

Certificate of Accreditation

The Philippine Accreditation Office, Department of Trade and Industry, grants accreditation to

Standards and Testing Division Industrial Technology Development Institute Department of Science and Technology Gen. Santos Ave., Bicutan, Taguig City

having been assessed and found conforming to the requirements of **PNS ISO/IEC 17025:2005** and the PAO conditions for laboratory accreditation in the field of **Microbiological Testing** as specified in the Scope of Accreditation.

This accreditation demonstrates technical competence for the specified scope in Appendix No. **ATEL-1-1113-081C** and the operation of a laboratory quality management system that meets the principles of ISO 9001:2008.

This Certificate is valid until 23 December 2018 subject to continuing conformity with the criteria and PAO conditions for laboratory accreditation.

Issued this 4th day of November 2013 at Makati City, Philippines.

ERNANI M. DIONISIO Officer-in-Charge Philippine Accreditation Office

Certificate of Accreditation

The Philippine Accreditation Bureau, Department of Trade and Industry, grants accreditation to

Physical and Performance Testing Laboratory Standards and Testing Division Industrial Technology Development Institute Department of Science and Technology DOST Compound, Gen. Santos Avenue, Bicutan, Taguig City

having been assessed and found conforming to the requirements of **PNS ISO/IEC 17025:2005** and the PAB conditions for laboratory accreditation in the field of **Mechanical Testing** as specified in the Scope of Accreditation.

This accreditation demonstrates technical competence for the specified scope in Appendix No. **ATEL-1-0516-191B** and the operation of a laboratory quality management system that meets the principles of ISO 9001:2008.

This Certificate is valid until **03 March 2021** subject to continuing conformity with the criteria and PAB conditions for laboratory accreditation.

Issued this 13th day of May 2016 at Makati City, Philippines.

JAMES E EMPEÑO Director IV Philippine Accreditation Bureau

PHILIPPINE ASSOCIATION FOR LABORATORY ANIMAL SCIENCE

presents this

ACHIEVEMENT OF PALAS ACCREDITATION

to

BIOLOGICAL RESEARCH & TESTING FACILITY

Industrial Technology Development Institute Department of Science and Technology

DOST Cpd., General Santos Avenue, Bicutan, Taguig City

May 2016

Joseph L. Masongkay

Joseph S. Masangkay, DVM, PhD Ranier B. Villanueva, MD. Chairman, Accreditation Board

President

PALAS is duly recognized by the Department of Agriculture, Bureau of Animal Industry as an association that accredits animal facilities in the Philippines pursuant to Republic Act No. 8485 known as the "Animal Welfare Act of 1998".

Republic of the Philippines Professional Regulation Commission Manila

The PROFESSIONAL REGULATORY BOARD OF CHEMISTRY

hereby grants this

Certificate of Authority to Operate

Pursuant to the powers vested in the Board of Chemistry under Sections 7g and 36 of Republic Act No. 10657, the DOST - INDUSTRIAL TECHOLOGY DEVELOPMENT INSTITUTE STANDARDS AND TESTING DIVISION

DOST Compound, Gen. Santos Avenue, Bicutan Taguig City

has been found to meet the requirements of the said Act and the Rules and Regulations of the Board.

In view whereof, this Certificate of Authority to Operate No. <u>010</u> is issued with all the rights and privileges appertaining thereto, this <u>26th</u> day of <u>February</u> 2018, at Manila, Philippines.

This Certificate shall be valid for three (3) years from the date of issue unless earlier revoked or suspended by the Board.

> ADORACION P. RESURRECCION Chairperson

> > Approved:

TEOFILO S. PILANDO, JR. Commission Chairman

> SID-BOC-04 Rev.00 May 9, 2017

Republic of the Philippines Professional Regulation Commission Manila

CPD COUNCIL OF CHEMISTRY

awards this

Certificate of Accreditation

to

INDUSTRIAL TECHNOLOGY DEVELOPMENT INSTITUTE

STD Bldg., Saliksik St., Department of Science and Technology Complex, Gen. Santos Ave., Bicutan, Taguig City

For having completed the requirements for **Continuing Professional Development (CPD) as CPD Provider** in accordance with the "Implementing Rules and Regulations (IRR) of Republic Act No. 10912, otherwise known as the CPD Act of 2016" set forth by the **PROFESSIONAL REGULATION COMMISSION** in Resolution No. 1032, Series of 2017

Accreditation No. CHM-2019-026

Given this 19th day of March 2019. Expires on 18 March 2022.

ADORACION P. RESURRECCION Chairperson

ATEL-1-0819-081C

SCOPE OF ACCREDITATION

Standards and Testing Division Industrial Technology Development Institute Department of Science and Technology Gen. Santos Ave., Bicutan, Taguig City

Biological Testing	······································	
Products / Class of Test	Specific tests or Measurements	Standard Method / Reference Standard
1.04 Tests on cosmetics, perfumes and esser	ntial oils	
.01 Microbial limits		
(.01)	Aerobic Plate Count	BAM, on-line 2017
1.05 Microbiological tests on foods and bever	ages	
.01 Microbial count	Aerobic Plate count	BAM Online 2001
(.01, .09)	Yeast and Mold count	
.02 Indicator microorganisms	Coliform count	BAM Online 2002
(.02, .04)	E. coli count	
.03 Pathogens	S. aureus count	BAM Online 2002
(.02, .07)	Salmonella detection	BAM Online 2001
AE. Fruits, Vegetables, Nuts and Seeds		
AG. Cereal and Cereal Products/Legume-		
Based Products		
AJ. Meat and Poultry Products		
AK. Fish and Shellfish Products		
AM. Beverages		
1.09 Microbiological test on Packaging Mater	Ials	CNANAEE Eth ad 2015
(.01)	Aerobic Plate Count	CIMIMEF 5** eu., 2015
1.13 Microbial Test of Waters including Effluents		
(.01, .02, .03)	Heterotrophic plate count	SIVIEVVVV ZZ ^{ine} edition, 2012
BA. Potable waters		
BB. Non potable waters	E. COII COUNT	
BG. Swimming and spa pools	ł	

ATEL-1-0819-081C

SCOPE OF ACCREDITATION

Standards and Testing Division Industrial Technology Development Institute Department of Science and Technology Gen. Santos Ave., Bicutan, Taguig City

Products / Class of Test	Specific tests or Measurements	Standard Method / Reference Standard
1.18 Others		
Plant extracts, Non-Food Non Pharma Products	Aerobic Plate Count	CMMEF 5 th ed. 2015 AOAC 18 th ed. 2005

Legend to Reference Standards:

Association of Official Analytical Chemists AOAC -

Bacteriological Analytical Manual BAM -CMMEF

Compendium of Methods for the Microbiological Examination of Foods -SMEWW

Standard Methods for the Examination of Water and Wastewater

This Scope of Accreditation is valid until 23 December 2023 subject to continuing conformity with the criteria and PAB conditions for accreditation.

EMPEÑO JAMES E Director IV **Philippine Accreditation Bureau** me

ATEL-1-1215-284A

SCOPE OF ACCREDITATION

Inorganic Chemistry Section-Chemistry Laboratory Standard and Testing Division Industrial Technology Development Institute DOST Compound, Gen. Santos Ave., Bicutan, Taguig City

Chemical Testing		
Products/ Class of Test	Specific tests or Measurements	Standard Method/ Reference Standard
2.33 Waters		
.01 Water potable and	Chlorine, Residual	SMEWW, 22 nd ed., 2012
domestic purposes		(4500-CI B)
.02 Drinking water	Chloride	SMEWW, 22 nd ed., 2012
.03 Water for irrigation and stock		(4500-CI ⁻ B, Titrimetric)
.04 Water for industrial and	Phosphorous	SMEWW, 22 nd ed., 2012
steam-raising purposes		(4500-P C)
.05 Sewage	Chloride	SMEWW, 22 nd ed., 2012
.06 Industrial waste	Nitrite	(4110B, Ion-Chromatography)
.07 Saline water	Nitrate	
.08 Bore waters	Phosphate	
.09 Water for aquaculture	Sulfate	
.11 Other waters	Alkalinity	SMEWW, 22 nd ed., 2012 (2320B)
	рН	SMEWW, 22 nd ed., 2012
		(4500-H ⁺ B)
	Color	SMEWW, 22 nd ed., 2012 (2120C)
	Total Dissolved Solids	SMEWW, 22 nd ed., 2012 (2540C)
	Total Suspended Solids	SMEWW, 22 nd ed., 2012 (2540D)
	Total Solids	SMEWW, 22 nd ed., 2012 (2540B)
	Turbidity	SMEWW, 22 nd ed., 2012 (2130B)
		TM-ICS-A015
		In-House Method
	Conductivity	SMEWW, 22 ^{ng} ed., 2012 (2510B)
	Total Hardness	SMEWW, 22 nd ed., 2012 (2340C)
	Mercury, total (by CV-AFS)	BS EN 13506:2002
	Nitrite	SMEWW 22 nd ed. 4500-NO2-B
2.36 Constituents of the Environment		
.01 Water other than saline	Chlorine, Residual	SMEWW, 22 nd ed., 2012
.02 Saline waters		(4500-CI B)
	Chloride	SMEWW, 22 nd ed., 2012
		(4500-Cl ⁻ B, Titrimetric)
	Phosphorous	SMEWW, 22 nd ed., 2012
		(4500-P C)

ATEL-1-1215-284A

SCOPE OF ACCREDITATION

Inorganic Chemistry Section-Chemistry Laboratory Standard and Testing Division Industrial Technology Development Institute

DOST Compound, Gen. Santos Ave., Bicutan, Taguig City

Products/ Class of Test	Specific tests or Measurements	Standard Method/ Reference Standard
	Chloride	SMEWW, 22 nd ed., 2012
	Nitrite	(4110B, Ion-Chromatography)
	Nitrate	SMEWW, 22 nd ed., 2012
	Phosphate	(4110B, Ion-Chromatography)
	Sulfate	
	Alkalinity	SMEWW, 22 nd ed., 2012 (2320B)
	pH	SMEWW, 22 nd ed., 2012
		(4500 <u>-H</u> + B)
	Color	SMEWW, 22 nd ed., 2012 (2120C)
	Total Dissolved Solids	SMEWW, 22 nd ed., 2012 (2540C)
	Total Suspended Solids	SMEWW, 22 nd ed., 2012 (2540D)
	Total Solids	SMEWW, 22 nd ed., 2012 (2540B)
	Turbidity	SMEWW, 22 nd ed., 2012 (2130B)
		TM-ICS-A015
		In-House Method
	Conductivity	SMEWW, 22 nd ed., 2012 (2510B)
	Total Hardness	SMEWW, 22 nd ed., 2012 (2340C)
	Mercury, total (by CV-AFS)	BS EN 13506:2002
	Nitrite	SMEWW 22 nd ed. 4500-NO2-B

Legends to Reference Standards:

SMEWW - Standard Method for the Examination of Water and Wastewaters

This Scope of Accreditation is valid until **22 December 2020** subject to continuing conformity with the criteria and PAB conditions for accreditation.

MPENO JAME **Director IV** Philippine Accreditation Bureau m

Issued Date: August 1, 2019

ATEL-1-0516-191B

SCOPE OF ACCREDITATION

Physical and Performance Testing Laboratory Standards and Testing Division Industrial Technology Development Institute Department of Science and Technology

DOST Compound, Gen. Santos Avenue, Bicutan, Taguig City

Mechanical Testing		
Product/ Class of Test	Specific Tests or Measurements	Method Used/ Reference Standard
4.08 Rubber and rubber products		
.01 Tension test	Tension test	ASTM D412-06ae2/ ISO 37
.02 Tear test	Tear Test	
.04 Compression set tests	Compression Set Test	ASTM D395/ ISO 815
.05 Hardness test	Hardness test	ASTM D2240-06
12 Other test	Abrasion	TM-PPTL-009
		In-house Method
	Ozone Resistance Test	PNS ISO 1431-1
4.17 Plastic and plastic products		
01 Tension test	Tension test	ASTM D882-09/
		ASTM D638-08
02 Tear test	Tear test	ASTM D1004
.05 Hardness test	Hardness test	ISO 868-03
09 Flow properties	Flow properties	ASTM D1238-04c
	(Melt flow rate)	
11 Other test	Flexural Test	ASTM D790/ISO 178
	Abrasion Test	TM-PPTL-009
		In-house Method

Legend to Reference Standards:

American Society for Testing Materials ASTM -

International Organization for Standardization ISO

This Scope of Accreditation is valid until 03 March 2021 subject to continuing conformity with the criteria and PAB conditions for accreditation.

JAMES E! EMPEÑO

Director IV Philippine Accreditation Bureau w Issued Date: August 1, 2019

Rev. 2

ATEL-1-0516-190B

SCOPE OF ACCREDITATION

Organic Chemistry Section - Chemistry Laboratory Standards and Testing Division Industrial Technology Development Institute Department of Science and Technology

Chemical Testing		3 - M.
Product/ Class of Test	Specific Tests or Measurements	Method Used/ Reference Standard
2.26 Foods		
.01 Cereals products	Ash	Method 945.18, 923.03
		AOAC International, 19th ed., 2012
	Fat	AOAC International, 19 th ed., 2012; BUCHI (Fat)
· · ·	Moisture	Method 945.15, 925.09B
		AOAC International, 19th ed., 2012
.02 Nuts and nut products	Ash	Method 950.49,
		AOAC International, 19th ed., 2012
	Fat	AOAC International, 19 th ed., 2012; BUCHI (Fat)
	Moisture	Method 925.40,
		AOAC International, 19th ed., 2012
.03 Dairy products	Ash	Method 945.46 and 920.108, 930.30
		AOAC International, 19th ed., 2012
l · · · · ·	Fat	AOAC International, 19th ed., 2012;
l <u> </u>		BUCHI (Fat)
	Moisture	Method 969.35, 925.07
		AOAC International, 19 th ed., 2012
.04 Meat, poultry and derived	Ash	Method 920.153 and 920.108,
products		AOAC International, 19 ^m ed., 2012
	Fat	AOAC International, 19 th ed., 2012;
		BUCHI (Fat)
	Moisture	Method 950.46B,
		AOAC International, 19 th ed., 2012
.05 Fish crustaceans and	Ash	Method 938.08,
mollusks and derived		AOAC International, 19 ^{ui} ed., 2012
products	Fat	AOAC International, 19 ^{ur} ed., 2012;
		BUCHI (Fat)
	Moisture	Method 952.08,
		AOAC International, 19 th ed., 2012

ATEL-1-0516-190B

SCOPE OF ACCREDITATION

Organic Chemistry Section - Chemistry Laboratory Standards and Testing Division Industrial Technology Development Institute Department of Science and Technology

Product/ Class of Test	Specific Tests or Measurements	Method Used/ Reference Standard
.06 Sugar and Sugar Products	Ash	900.02
		AOAC International, 19th ed., 2012
-	Fat	TM-OCS-304
		In-house Method
	Moisture	925.45A, 925.45B, 925.45C, 925.45D
		AOAC International, 19th ed., 2012
.07 Confectionary	Ash	900.02
		AOAC International, 19th ed., 2012
	Fat	TM-OCS-304
		In-house Method
	Moisture	925.45A, 925.45B, 925.45C, 925.45D
		AOAC International, 19th ed., 2012
.08 Fruits, jams and other fruit	Ash	Method 940.26,
products		AOAC International, 19th ed., 2012
	Fat	AOAC International, 19 th ed., 2012;
		BUCHI (Fat)
	Moisture	Method 934.06,
		AOAC International, 19 th ed., 2012
	Benzoic Acid	In-house Validated Method:
		(TM-OCS-201, Gravimetric)
		(1M-OCS-202, Volumetric)
	Sorbic Acid	In-nouse validated Method:
	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	(TM-OCS-202, Volumetric)
	litratable Acidity	Method 942.15,
		AOAC International, 19 ^{er} ed., 2012
	рн	Method 945.27,
OD Magatables and wagatable	Alah	AUAC International, 19 th ed., 2012
	ASN	
products	F _4	ACAC International, 19" ed., 2012
, ,	Fat	AUAU International, 19 ⁴⁴ ed., 2012;
		BUCHI (Fat)

ATEL-1-0516-190B

SCOPE OF ACCREDITATION

Organic Chemistry Section - Chemistry Laboratory Standards and Testing Division Industrial Technology Development Institute Department of Science and Technology

Product/ Class of Test	Specific Tests or Measurements	Method Used/ Reference Standard
	Moisture	Method 930.04,
		AOAC International, 19th ed., 2012
.11 Softdrinks and Cordials	Ash	950.14
		AOAC International, 19th ed., 2012
	Fat	TM-OCS-304
		In-house Method
	Moisture	925.45D
		AOAC International, 19 th ed., 2012
.12 Fruit juices, drinks and	Benzoic Acid	In-house Validated Methods:
concentrates		(TM-OCS-201, Gravimetric)
		(1M-OCS-202, Volumetric)
	Sorbic Acid	In-house Validated Method:
	A	(IM-OUS-202, Volumetric)
	Aciaity	Method 942.15,
		AOAC International, 19 th ed., 2012
	рн	
	A - 1-	AOAC International, 19 th ed., 2012
1	Asn	950.14
	F -4	AUAC International, 19 th ed., 2012
	⊦at	IM-OCS-304
ŧ	B d r 2 d r r r	
	Moisture	925.45D
	<u> </u>	AOAC International, 19 th ed., 2012
.15 Eggs and Eggs Product	Fat	IM-OCS-304
		In-house Method
	Moisture	925.30
	·	AOAC International, 19 th ed., 2012
.20 Other Hood Products	Ash	923.03, 935.39, 920.93/920.10
(Flour, Baked Products,		AOAC International, 19 ^m ed., 2012
Coffee & Tea/Roasted	Fat	TM-OCS-304
Coffee)		In-house Method

ATEL-1-0516-190B

SCOPE OF ACCREDITATION

Organic Chemistry Section - Chemistry Laboratory Standards and Testing Division Industrial Technology Development Institute Department of Science and Technology

DOST Compound, Gen. Santos Avenue, Bicutan, Taguig City

Product/ Class of Test	Specific Tests or Measurements	Method Used/ Reference Standard
	Moisture	925.09, 925.10, 935.39, 968.11, 979.12/925.19 AOAC International, 19 th ed., 2012
.24 Sauces, spices and condiments	Ash	Method 941.12A, AOAC International, 19 th ed., 2012
	Fat	AOAC International, 19th ed., 2012; BUCHI (Fat)
	Moisture	PNS 274:1993
	Benzoic Acid	In-house Validated Methods: (TM-OCS-201, Gravimetric) (TM-OCS-202, Volumetric)
	Sorbic Acid	In-house Validated Method: (TM-OCS-202, Volumetric)
	Acidity	Method 930.35, AOAC International, 19 th ed., 2012
	рН	Method 945.27, AOAC International, 19 th ed., 2012
.25 Food supplement and/or Dietary supplement	Ash	Method 925.5, AOAC International, 19 th ed., 2012
	Fat	AOAC International, 19th ed., 2012; BUCHI (Fat)
	Moisture	Method 930.04, AOAC International, 19 th ed., 2012
2.32 Agriculture products and ma	terials	
.01 Cereal grains and by- products	Ash	Method 945.18, AOAC International, 19th ed., 2012
	Fat	AOAC International, 19th ed., 2012; BUCHI (Fat)
	Moisture	Method 945.15, AOAC International, 19th ed., 2012
.03 Stock Feeds	Ash	Method 942.05, AOAC International, 19th ed., 2012

Rev. 2

ATEL-1-0516-190B

SCOPE OF ACCREDITATION

Organic Chemistry Section - Chemistry Laboratory Standards and Testing Division Industrial Technology Development Institute Department of Science and Technology

DOST Compound, Gen. Santos Avenue, Bicutan, Taguig City

Product/ Class of Test	Specific Tests or Measurements	Method Used/ Reference Standard
	Fat	AOAC International, 19th ed., 2012; BUCHI (Fat)
	Moisture	Method 930.15, AOAC International, 19 th ed., 2012

Legends to Reference Standards:

AOAC - Association of Official Analytical Chemists

BUCHI (Protein) -BUCHI (Fat) -

 BUCHI Kjeldahl Digestion Manual Application Note and Operation Manual BUCHI Protein Digestor K-437 and BUCHI Distillation Unit B-316
 BUCHI Operation Manual Extraction Unit E-816 SOX, Version A 1.2 BUCHI Operation

 BUCHI Operation Manual Extraction Unit E-816 SOX, Version A 1.2 BUCHI Operation Manual Hydrolysis Unit E-416, Version D

This Scope of Accreditation is valid until **17 February 2021** subject to continuing conformity with the criteria and PAB conditions for accreditation.

JAMÈ Director IV Philippine Accreditation Bureau Ne

